In pancreatic adenocarcinoma (PDAC)
Given its pivotal role in PDAC,
RAS is an important therapeutic target1
SCROLL
When PDAC presents, expect RAS1
Initiation
Oncogenic RAS mutation is an initiating genetic event in the development of PDAC7
Progression
The resulting oncogenic RAS(ON) signaling drives tumor proliferation and cell survival4,7,11,12
Resistance
Oncogenic RAS(ON) signaling may promote an immunosuppressive tumor microenvironment that can contribute to resistance to therapy12,13
Excessive RAS signaling may contribute to the difficulty of treating PDAC4,12,13
KRAS, NRAS, and HRAS are the primary RAS isoforms.1,3
RAS mutations in PDAC1

The NCCN Clinical Practice Guidelines In Oncology (NCCN Guidelines®) for Pancreatic Adenocarcinoma recommend molecular testing for patients with locally advanced/metastatic disease to identify potentially actionable somatic findings, including KRAS mutations using comprehensive genomic profiling.14‡
Targeting multiple RAS mutations is an opportunity to address unmet need in RAS-addicted PDAC
Metastatic PDAC remains one of the most lethal forms of cancer, with a 5-year survival rate of about 3%15
Currently available treatments fall short in treating patients with PDAC
Learn more
*Includes any NRAS mutation at positions G12, G13, or Q61.1
†Includes any mutation at this KRAS position.1
‡Tumor/somatic molecular profiling, preferably using a next-generation sequencing (NGS) assay, is recommended for patients with locally advanced/metastatic disease who are candidates for anticancer therapy to identify clinically actionable and/or emerging alterations. These alterations include, but are not limited to: fusions (ALK, NRG1, NTRK, ROS1, FGFR2, and RET), mutations (BRAF, BRCA1/2, KRAS, and PALB2), amplifications (HER2), microsatellite instability (MSI), mismatch repair deficiency (dMMR), or tumor mutational burden (TMB) using comprehensive genomic profiling via an FDA-approved and/or validated next-generation sequencing (NGS)–based assay, and HER2 overexpression via IHC ± FISH. RNA sequencing assays are preferred for detecting RNA fusions because gene fusions are better detected by RNA-based NGS. Testing on tumor tissue is preferred; however, cell-free DNA testing can be considered if tumor tissue testing is not feasible.14
1L=first-line; 2L=second-line; ALK=anaplastic lymphoma kinase; BRAF=B-Raf proto-oncogene, serine/threonine kinase; BRCA=breast cancer gene; DNA=deoxyribonucleic acid; FGFR2=fibroblast growth factor receptor 2; FISH=fluorescence in situ hybridization; HER2=human epidermal growth factor receptor 2; HRAS=Harvey rat sarcoma virus; IHC=immunohistochemistry; KRAS=Kirsten rat sarcoma virus; NRAS=neuroblastoma rat sarcoma virus; NRG1=neuregulin 1; NTRK=neurotrophic tyrosine receptor kinase; OS=overall survival; PALB2=partner and localizer of BRCA2; RAS=rat sarcoma virus; RET=ret proto-oncogene protein; RNA=ribonucleic acid; ROS1=ROS proto-oncogene 1, receptor tyrosine kinase.
References: 1. Pant S, Ahler E, Kar S, Lin KK. Prevalence of oncogenic RAS mutations in patients with metastatic pancreatic ductal adenocarcinoma (PDAC) derived from the real-world evidence database FoundationCORE. Poster presented at: ASCO Gastrointestinal Cancers Symposium; January 23-25, 2025; San Francisco, CA. 2. Lee JK, Sivakumar S, Schrock AB, et al. Comprehensive pan-cancer genomic landscape of KRAS altered cancers and real-world outcomes in solid tumors. NPJ Precis Oncol. 2022;6(1):91. doi:10.1038/s41698-022-00334-z 3. Prior IA, Hood FE, Hartley JL. The frequency of Ras mutations in cancer. Cancer Res. 2020;80(14):2969-2974. doi:10.1158/0008-5472.CAN-19-3682 4. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):17-33. doi:10.1016/j.cell.2017.06.009 5. Young A, Lou D, McCormick F. Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov. 2013;3(1):112-123. doi:10.1158/2159-8290.CD-12-0231 6. Zhou B, Der CJ, Cox AD. The role of wild type RAS isoforms in cancer. Semin Cell Dev Biol. 2016;58:60-69. doi:10.1016/j.semcdb.2016.07.012 7. Gurreri E, Genovese G, Perelli L, et al. KRAS-dependency in pancreatic ductal adenocarcinoma: mechanisms of escaping in resistance to KRAS inhibitors and perspectives of therapy. Int J Mol Sci. 2023;24(11):9313. doi:10.3390/ijms24119313 8. Singhal A, Li BT, O'Reilly EM. Targeting KRAS in cancer. Nat Med. 2024;30(4):969-983. doi:10.1038/s41591-024-02903-0 9. Waters AM, Der CJ. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect Med. 2018;8(9):a031435. doi:10.1101/cshperspect.a031435 10. Zhou Y, Hancock JF. Ras nanoclusters: versatile lipid-based signaling platforms. Biochim Biophys Acta. 2015;1853(4):841-849. doi:10.1016/j.bbamcr.2014.09.008 11. Gimple RC, Wang X. RAS: striking at the core of the oncogenic circuitry. Front Oncol. 2019;9:965. doi:10.3389/fonc.2019.00965 12. Zhang Z, Zhang H, Liao X, Tsai H-I. KRAS mutation: the booster of pancreatic ductal adenocarcinoma transformation and progression. Front Cell Dev Biol. 2023;11:1147676. doi:10.3389/fcell.2023.1147676 13. Nusrat F, Khanna A, Jain A, et al. The clinical implications of KRAS mutations and variant allele frequencies in pancreatic ductal adenocarcinoma. J Clin Med. 2024;13(7):2103. doi:10.3390/jcm13072103 14. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Pancreatic Adenocarcinoma V2.2025. © National Comprehensive Cancer Network, Inc. 2025. All rights reserved. Accessed September 24, 2025. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way. 15. Cancer stat facts: pancreatic cancer. National Cancer Institute Surveillance, Epidemiology, and End Results Program. Accessed September 24, 2025. https://seer.cancer.gov/statfacts/html/pancreas.html 16. Wainberg ZA, Melisi D, Macarulla T, et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial. Lancet. 2023;402(10409):1272-1281. doi:10.1016/S0140-6736(23)01366-1 17. Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691-1703. doi:10.1056/NEJMoa1304369 18. Conroy T, Desseigne F, Ychou M, et al; Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817-1825. doi:10.1056/NEJMoa1011923 19. Philip PA, Sahai V, Bahary N, et al. Devimistat (CPI-613) with modified fluorouarcil, oxaliplatin, irinotecan, and leucovorin (FFX) versus FFX for patients with metastatic adenocarcinoma of the pancreas: the phase III AVENGER 500 study. J Clin Oncol. 2024;42(31):3692-3701. doi:10.1200/JCO.23.02659 20. Van Cutsem E, Tempero MA, Sigal D, et al; HALO 109-301 Investigators. Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J Clin Oncol. 2020;38(27):3185-3196. doi:10.1200/JCO.20.00590 21. Tempero M, Oh D-Y, Tabernero J, et al. Ibrutinib in combination with nab-paclitaxel and gemcitabine for first-line treatment of patients with metastatic pancreatic adenocarcinoma: phase III RESOLVE study. Ann Oncol. 2021;32(5):600-608. doi:10.1016/j.annonc.2021.01.070 22. Bekaii-Saab T, Okusaka T, Goldstein D, et al. Napabucasin plus nab-paclitaxel with gemcitabine versus nab-paclitaxel with gemcitabine in previously untreated metastatic pancreatic adenocarcinoma: an adaptive multicentre, randomised, open-label, phase 3, superiority trial. EClinicalMedicine. 2023;58:101897. doi:10.1016/j.eclinm.2023.101897 23. De La Fouchardière C, Malka D, Cropet C, et al. Gemcitabine and paclitaxel versus gemcitabine alone after 5-fluorouracil, oxaliplatin, and irinotecan in metastatic pancreatic adenocarcinoma: a randomized phase III PRODIGE 65-UCGI 36-GEMPAX UNICANCER study. Abstract. J Clin Oncol. 2024;42(9):1055-1066. doi:10.1200/JCO.23.00795 24. Hammel P, El-Hariry I, Macarulla T, et al. Trybeca-1: a randomized, phase 3 study of eryaspase in combination with chemotherapy versus chemotherapy alone as second-line treatment in patients with advanced pancreatic adenocarcinoma (NCT03665441). J Clin Oncol. 2022;40(4):suppl. 2022 ASCO Gastrointestinal Cancers Symposium abstract 518. doi:10.1200/JCO.2022.40.4_suppl.518 25. Chung V, McDonough S, Philip PA, et al. Effect of selumetinib and MK-2206 vs oxaliplatin and fluorouracil in patients with metastatic pancreatic cancer after prior therapy: SWOG S1115 study randomized clinical trial. JAMA Oncol. 2017;3(4):516-522. doi:10.1001/jamaoncol.2016.5383 26. Hecht JR, Lonardi S, Bendell J, et al. Randomized phase III study of FOLFOX alone or with pegilodecakin as second-line therapy in patients with metastatic pancreatic cancer that progressed after gemcitabine (SEQUOIA). J Clin Oncol. 2021;39(10):1108-1118. doi:10.1200/JCO.20.02232 27. Huffman BM, Basu Mallick A, Horick NK, et al. Effect of a MUC5AC antibody (NPC-1C) administered with second-line gemcitabine and nab-paclitaxel on the survival of patients with advanced pancreatic ductal adenocarcinoma: a randomized clinical trial. JAMA Netw Open. 2023;6(1):e2249720. doi:10.1001/jamanetworkopen.2022.49720 28. Chiorean EG, Guthrie KA, Philip PA, et al. Randomized phase II study of PARP inhibitor ABT-888 (veliparib) with modified FOLFIRI versus FOLFIRI as second-line treatment of metastatic pancreatic cancer: SWOG S1513. Clin Cancer Res. 2021;27(23):6314-6322. doi:10.1158/1078-0432.CCR-21-1789 29. Wang-Gillam A, Li C-P, Bodoky G, et al; NAPOLI-1 Study Group. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016;387(10018):545-557. doi:10.1016/S0140-6736(15)00986-1 30. Witkiewicz AK, McMillan EA, Balaji U, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744. doi:10.1038/ncomms7744 31. Allen MJ, Zhang A, Bavi P, et al. Molecular characterisation of pancreatic ductal adenocarcinoma with NTRK fusions and review of the literature. J Clin Pathol. 2023;76(3):158-165. doi:10.1136/jclinpath-2021-207781 32. Gkountakos A, Singhi AD, Westphalen CB, Scarpa A, Luchini C. Fusion genes in pancreatic tumors. Trends Cancer. 2024;10(5):430-443. doi:10.1016/j.trecan.2024.01.009 33. Golan T, Kindler HL, Park JO, et al. Geographic and ethnic heterogeneity of germline BRCA1 or BRCA2 mutation prevalence among patients with metastatic pancreatic cancer screened for entry into the POLO trial. J Clin Oncol. 2020;38(13):1442-1454. doi:10.1200/JCO.19.01890 34. Kato S, Subbiah V, Marchlik E, Elkin SK, Carter JL, Kurzrock R. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin Cancer Res. 2017;23(8):1988-1997. doi:10.1158/1078-0432.CCR-16-1679 35. Lawlor RT, Mattiolo P, Mafficini A, et al. Tumor mutational burden as a potential biomarker for immunotherapy in pancreatic cancer: systematic review and still-open questions. Cancers (Basel). 2021;13(13):3119. doi:10.3390/cancers13133119 36. Luchini C, Brosens LAA, Wood LD, et al. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. Gut. 2021;70(1):148-156. doi:10.1136/gutjnl-2020-320726 37. Drugs approved for pancreatic cancer. National Cancer Institute. Updated May 8, 2025. Accessed October 7, 2025. https://www.cancer.gov/about-cancer/treatment/drugs/pancreatic
© 2025 Revolution Medicines, Inc. RVMD-US-0002This site is intended for US Healthcare Professionals.